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a  b  s  t  r  a  c  t

Wheat  is Europe’s  dominant  crop in  terms  of  land  use in  the European  Union  (EU25).  Most  of  this  wheat
area  is  sown  in  autumn,  i.e., winter  wheat  in  all  EU25  countries,  apart  from  southern  Italy,  southern
Spain  and  most  of  Portugal,  where  spring  wheat  varieties  are  sown  in  late  autumn.  We  evaluated  the
strengths  and  limitations  of  a regional  implementation  of the  crop growth  model  WOFOST  implemented
in  the  Crop  Growth  Monitoring  System  (CGMS)  for calculating  yield  gaps  of autumn-sown  wheat  across
the EU25.  Normally,  CGMS  is  used  to  assess  growing  conditions  and  to calculate  timely  and  quantitative
yield  forecasts  for  the  main  crops  in  Europe.  Plausibility  of growth  simulations  by  CGMS  in terms  of leaf
area, total  biomass  and  harvest  index  were  evaluated  and  simulated  yields  were  compared  with  those
from  other  global  studies.  This  study  shows  that  water-limited  autumn-sown  wheat  yields,  being the
most  relevant  benchmark  for the  largely  rain  fed  wheat  cultivation  in Europe,  are  plausible  for most
ield potential parts  of the  EU25  and  can  be used  to calculate  yield  gaps  with  some  precision.  In  parts  of  southern
Europe  unrealistic  simulated  harvest  index,  maximum  leaf  area  index  and  biomass  values  were  found
which  are  mainly  caused  by  wrong  values  of  phenology  related  crop  parameters.  Furthermore  CGMS
slightly  underestimates  potential  and  water-limited  yields,  which  calls  for a calibration  using  new  field
experiments  with  recent  cultivars.  Estimated  yield  gap  is  between  2 and  4  t ha−1 in  main  parts  of the

estern
EU25,  is smaller  north-w

. Introduction

The European Union is a large food consumer and producer.
opulation growth, dietary changes (in particular, an increase in
eat consumption) and increasing demand for bio-fuels (Godfray

t al., 2010) are expected to result in a need for increasing crop
roduction. Generally, in Europe actual yields are high and the gap
etween potential or water-limited yields and actual yields is rela-
ively limited. Nevertheless it is important to identify regions where
nd to what extent crop yields can still increase.

Various approaches to determine global yield gaps exist (cf. Van
ttersum et al., 2013; Lobell et al., 2009). Neumann et al. (2010)
pplied a stochastic frontier production function to calculate global

atasets of maximum attainable yields. Licker et al. (2010) evalu-
ted attainable crop yields in different climates around the world by
omparing yield patterns within regions of similar climate. Penning
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E-mail addresses: hendrik.boogaard@wur.nl (H. Boogaard), joost.wolf@wur.nl
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 Europe  and  highest  in Portugal.
©  2012  Elsevier  B.V.  All  rights  reserved.

De Vries et al. (1997),  Rabbinge and Van Diepen (2000),  Fischer
et al. (2002) and Nelson et al. (2010) simulated potential crop yields
(using process based models) which were subsequently compared
to actual yields.

Many crop simulation studies at global scale did not focus on
potential or water-limited yields but on actual crop yield levels
(Stehfest et al., 2007; Liu et al., 2007; Parry et al., 1999, 2004;
Deryng et al., 2011; Bondeau et al., 2007). As such, results of
these studies cannot be used for determining and benchmarking
a yield gap. Global, model-based studies follow a top-down grid
based strategy using global data sets of monthly weather (usu-
ally interpolated to daily data), crop and soil data fed into generic
crop models with hardly any local calibration and validation of the
models. While these studies lack inclusion of locally relevant infor-
mation and factors that can influence yield potential, they have
the advantage of global spatial coverage and using a consistent
method worldwide, as opposed to many fragmented local studies,
each with their own method (Lobell et al., 2009; Van Ittersum et al.,

2013).

Van Ittersum et al. (2013) propose a bottom-up protocol for
yield gap analysis that can be applied globally but has a strong local
meteorological and agronomic basis. The protocol recommends (a)

dx.doi.org/10.1016/j.fcr.2012.11.005
http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
mailto:hendrik.boogaard@wur.nl
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he use of well-calibrated crop growth simulation model applied
o zones with a relatively homogenous climate, (b) the use of mea-
ured weather data, (c) the simulations to be done for the dominant
oil types and cropping systems considering the current spatial crop
istribution, (d) the use of site-specific agronomic and actual yield

nformation, (e) empirical verification at the local level of estimated
ield gaps with on-farm data and experiments and (f) explicit meth-
ds for up scaling.

We  used the crop growth model WOFOST implemented in the
rop Growth Monitoring System (CGMS) to estimate the yield gap
f wheat sown in autumn (autumn-sown) across the European
nion (EU25).1 Autumn-sown wheat is Europe’s main crop in terms
f area (around 18 million ha in the EU25); it stands for winter
heat in most of the EU25, apart from southern Italy, southern

pain and most of Portugal where spring wheat varieties are sown
n late autumn. CGMS relies on local weather, soil and crop data
s much as currently available as recommended by Van Ittersum
t al. (2013),  but it has full spatial coverage so it does not require up
caling procedures. Normally, CGMS is applied to monitor growing
onditions for the main crops over Europe on a regional scale (e.g.,
upit et al., 2012, 2010; Baruth et al., 2008). It is an integral part
f the MARS Crop Yield Forecasting System (MCYFS; Micale and
enovese, 2004; Lazar and Genovese, 2004; Genovese and Bettio,
004) that provides the European Commission (EC) with timely and
uantitative yield forecasts for the main European crops. In this
aper we assess the strengths and limitations of CGMS to estimate
ield gaps of autumn-sown wheat for the EU25.

. Materials and methods

.1. Actual wheat yields

Mean actual wheat yields over the EU25 have been derived from
he FADN (farm accountancy data network2) database. FADN is a
uropean system of sample surveys held each year to collect struc-
ural and accountancy data on farms. The aim is to monitor the
ncome and business activities of agricultural holdings and to evalu-
te the impacts of the Common Agricultural Policy (CAP). The FADN
urveys include only farms that exceed a minimum economic size
threshold) so as to cover the most relevant part of the agricultural
ctivity of each EU Member State. Only data until 2006 could be
btained. We  selected the period 1990–2006 to sufficiently capture
nter-annual variability and extreme yields in both the actual and
imulated yield series. The period is smaller for member states that
oined the European Union after 1990 (e.g., Baltic States, Slovenia,
tc.). Yields in the FADN database are not differentiated for winter
nd spring wheat.

Actual wheat yields in FADN are collected either per coun-
ry (small countries) or departments or states (large countries)
Janssen et al., 2009) and are subsequently converted into to dry
eight (assuming 16% moisture content) and averaged across all

ears. The FADN database does not distinguish between irrigated
nd rain fed crop yields. To allow a meaningful yield gap analysis
or a rain fed and irrigated water regime we used information on
he spatial distribution and level of irrigation (Siebert et al., 2007).
.2. The WOFOST model

The crop growth simulation model WOFOST (Van Diepen et al.,
989; Supit et al., 1994; Boogaard et al., 1998) is the central

1 We use the term EU25 though Malta and Cyprus are not included as these
ountries are not relevant for a winter wheat yield gap analysis.

2 http://ec.europa.eu/agriculture/rica/.
earch 143 (2013) 130–142 131

component of CGMS. WOFOST3 was originally developed to sim-
ulate crop yield for a single location where weather, soil and crop
data are assumed homogeneous. It is a member of the family
of Wageningen crop models (Van Ittersum et al., 2003; Bouman
et al., 1996). WOFOST computes daily biomass accumulation and
its distribution over crop organs during the growth period using a
photosynthesis approach. Crop yield is simulated for the poten-
tial (Yp) and the water-limited (Yw) situation and is expressed
in dry weight (0% moisture). Yp is determined by temperature,
day length, solar radiation and genetic characteristics assuming
absence of any water or other stress factors. Yw is also limited by
water supply, and hence influenced by rainfall, soil type and field
topography. Soil water dynamics in the rooted zone are simulated
with a daily time step. For both Yp and Yw an optimal nutrient sup-
ply is assumed. Yield losses caused by pests, diseases, weed and/or
extreme weather events are not considered. Vernalization is not
implemented and crop growth and phenological development are
therefore calculated from January 1 onwards. Crop growth simu-
lation initiates at mean daily temperatures above 0 ◦C assuming
an initial biomass representing the crop state after the cold winter
period.

WOFOST has been applied to simulate production of the main
annual crops over Europe under present (De Koning and Van
Diepen, 1992; Supit et al., 2010) and future conditions (Wolf, 1993;
Wolf and Van Diepen, 1995; Supit et al., 2012). It has also been
used for regional land evaluation, yield potential, risk analysis and
yield forecasting studies in Europe, Africa and China (Reidsma et al.,
2009; Hengsdijk et al., 2005; Savin et al., 1997; Wu et al., 2006;
Rötter et al., 1997; Rötter and Van Keulen, 1997). Modelling results
from WOFOST have been validated versus experimental informa-
tion in many studies (Boons-Prins et al., 1993; Wolf, 1993; Wolf and
Van Diepen, 1995; Reidsma et al., 2009) and by way of model com-
parison exercises (Rötter et al., 2012; Palosuo et al., 2011; Eitzinger
et al., 2012).

To apply WOFOST on a regional scale it has been incorporated
in CGMS creating an environment to run WOFOST for every loca-
tion with a unique set of weather, soil and crop characteristics.
Weather and crop data are assumed to be homogeneous per grid
cell of the 25 km × 25 km climate grid while the soil characteristics
are assumed to be homogeneous per soil unit. By overlaying the
25 km × 25 km climatic grid, soil map  and arable land cover map,
simulation units are determined. Logically each simulation unit is a
unique combination of the climatic grid cell and soil unit and is valid
for arable land only. In the absence of a winter and spring wheat
land use map, an arable land cover map  is used which is based on
the GLC2000 (Bartholomé and Belward, 2005). It combines several
classes of the GLC2000 into one arable land class.

2.3. Input data for CGMS

Historical weather data, i.e., daily values of maximum and
minimum temperature, wind speed, global radiation, vapour
pressure and precipitation are interpolated from station data to a
25 km × 25 km climatic grid (Beek et al., 1992; Van der Voet et al.,
1993). These station data have been collected from the Global
Telecommunication System (GTS) of the World Meteorological
Organization as well as from national and sub national station
networks. Presently, data from nearly 7000 stations are available.

Of these stations about 2500 receive daily meteorological infor-
mation. From 1975 a more or less complete European coverage is
available. A simple interpolation procedure method was  selected
because of its ease to automate and its fast performance while

3 http://www.wofost.wur.nl/UK/documentation/.

http://ec.europa.eu/agriculture/rica/
http://www.wofost.wur.nl/UK/documentation/
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Fig. 1. Climate characteristics of grid cells of arable land map: long term daily mean temperature (◦C) in January–March (upper left) and April–June (upper right) and long
term  precipitation sum (mm) over January–June (bottom). (For interpretation of the references to colour in this artwork, the reader is referred to the web version of the
article.)

Source:  MARS Crop Yield Forecasting System of the European Commission.
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aintaining sufficient accuracy as input to the crop growth model
Gozzini et al., 2000; Beek et al., 1992). Interpolation is executed in
wo steps: first the selection of suitable meteorological stations to
etermine representative meteorological conditions for a specific
limatic grid cell. Second, a simple average is calculated for most of
he meteorological parameters, with a correction for the altitude
ifference between the station and climatic grid cell centre in case
f temperature and vapour pressure. As an exception precipitation
ata are taken directly from the most representative station. Mean
aily temperature and precipitation sum over the growing season
re shown in Fig. 1.

Crop parameter values for CGMS have initially been compiled by
an Heemst (1988) and calibrated by Van Diepen and De Koning

1990).  In the framework of the MARS project Boons-Prins et al.
1993) have collected field experimental data from the United King-
om, The Netherlands and Belgium to calibrate leaf area dynamics
nd yield levels. Moreover, crop phenology data was collected and
eviewed (Russell and Wilson, 1994; Narciso et al., 1992; Hough,
990) over western and southern Europe to determine region spe-
ific, phenology related crop parameters (temperature sums) used
y the model to simulate flowering and maturity. During the late
ineties Willekens et al. (1998) updated these temperature sum
arameters at 50 km × 50 km grid and extended the spatial cov-
rage to countries in MAGRHEB (central and eastern Europe and
urkey).

The 1:1,000,000 EU soil map  and data base version 4.0 is used to
upply the spatial distribution of the soil mapping unit (SMU), the
omposition of soil typologic units (STU) within each SMU  and the
oil properties of each STU (Baruth et al., 2006). For each STU CGMS
equires the potential rooting depth and water retention properties
volumetric soil moisture content at wilting point, field capacity
nd saturation) to calculate a soil water balance. The spatial scale
f the soil map  is sufficiently detailed to reveal variability of water-
imited yields due to different soils within a 25 km × 25 km climatic
rid cell.

Simulated potential and water-limited yields are aggregated to
he administrative regions of the European Union, the so-called
UTS4 regions. Four NUTS levels, 0–3 are used, 0 being the national
nd 3 the smallest sub-regional level. Historical data on planted
rea on all NUTS levels originate from EUROSTAT (2005).  The aggre-
ation from simulation units to NUTS3 uses area weights taken
rom the arable land cover map  while the aggregation from NUTS3
o NUTS2, NUTS 1 and NUTS 0 are based on planted area from
UROSTAT (2005).

.4. Autumn-sown wheat growth modelling and evaluation

In this paper we focus on wheat crops that are sown in autumn
arying from August in northern Europe to late November in
outhern Europe. For all simulation units besides potential (Yp)
nd water-limited dry weight yields (Yw), the total above-ground
iomass at harvest (BIOM, dry matter in t ha−1), the harvest index
HI, equal to grain yield dry matter/BIOM) and the maximum value
or leaf area index (LAI-max, m2 leaf area m−2 land area) during
he growing period were saved for the period 1990–2006. The
lausibility of the growth simulations was evaluated by compar-

ng BIOM, HI and LAI-max. In addition, the simulated anthesis
nd maturity dates and the relative crop transpiration (i.e., actual

vapo-transpiration over potential evapo-transpiration) for the
ater-limited production situation were used to evaluate the sim-
lations. Note, that it is not possible to rigorously calibrate crop
arameters of CGMS for all simulations units (around 16,000).

4 http://ec.europa.eu/eurostat/ramon/nuts/codelist en.cfm?list=nuts.
Fig. 2. Simulated potential autumn-sown wheat yields (dry matter; t ha−1). (For
interpretation of the references to colour in this artwork, the reader is referred to
the  web  version of the article.)

Though phenology related parameters have been updated for local
weather and regional crop calendars at a 50 km × 50 km grid (Sec-
tion 2.3)  other crop parameters related to leaf area dynamics and
yield level have been extrapolated from crop parameters sets cali-
brated for a limited number of sites in Western Europe. In addition
to the above quality checks we  compared the potential and water-
limited yields and yield gaps with results of other studies.

3. Results from CGMS calculations

3.1. Potential yields

Due to moderate differences in climate, potential autumn-sown
wheat yields show a limited variation over the EU25 (8–11 t ha−1,
see Fig. 2). Highest potential yields mainly occur in Ireland, UK,
western France, areas that have a long growing period with rela-
tively low spring and summer temperatures as a result of a strong
maritime influence. Portugal and southern regions of Spain and
Italy also have high potential yields due to mild winter tem-
peratures. Lowest potential yields (below 8 t ha−1) are found in
north-eastern Italy, Slovenia and northern Greece.

Fig. 3 shows the simulated anthesis and maturity dates. Anthesis
dates increase from south to north: around March 20 in southern
Spain to July 10 in southern Scandinavia. The maturity dates show
the same pattern: around June 10 in southern Spain to August 30 in

northern Europe. Logically, simulated anthesis and maturity dates
closely resemble the observed crop calendars that were used to
determine region specific temperatures sum parameters used in
CGMS.

http://ec.europa.eu/eurostat/ramon/nuts/codelist_en.cfm?list=nuts
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Fig. 3. Simulated dates of crop anthesis (left) and maturity (right) for autumn-sown wheat. (For interpretation of the references to colour in this artwork, the reader is
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eferred to the web  version of the article.)

Three crop characteristics (BIOM, HI and LAI-max, see Fig. 4)
re used to evaluate the plausibility of the potential yields. Under
ptimal growing conditions we expect a BIOM between 16 and
2 t ha−1, a HI between 0.40 and 0.60, and a LAI-max between 4 and

 (Boons-Prins et al., 1993; Groot and Verberne, 1991; information
rom Dutch winter wheat variety trials5). LAI-max values fall in the
xpected range over the main part of Europe (Fig. 4). Slightly higher
alues are observed in temperate climate areas along the coast and
ower values are found in cool areas (e.g., in Sweden) and in conti-
ental climate areas, resulting in a lower light interception and thus

 reduced growth. Significantly lower values occur in some areas in
entral-eastern Spain, southern France, central Italy, Slovenia and
reece. These areas appear to have a value too low for the model
arameter that determines the duration between 1st January and
nthesis, resulting in a short simulated period of leaf formation and
hus a low simulated LAI-max and light interception. In few areas
mainly small areas in central-eastern Spain) with a strong conti-
ental climate, simulated LAI-max and BIOM appear to be very low.
verage daily temperatures in spring are between 5 and 10◦ leading

o continuous on-going crop development. However the minimum
emperature is often close to or below zero which completely stops
ssimilation. This is caused by a model function describing the

ransformation of assimilates into structural biomass during night.
f low minimum temperatures prevail for a several days, assimilates
ccumulate and the assimilation rate diminishes and ultimately

5 http://www.kennisakker.nl/kenniscentrum/document/
assenbulletin-wintertarwe.
halts (Supit et al., 1994). In reality, wheat varieties that are grown
in these areas are probably better adapted (than assumed in this
model function) for these continental conditions.

Highest BIOM (>20 t ha−1) values occur in coastal regions (e.g.,
Ireland, UK, western France, Portugal, and Denmark) as a result of a
long growth period that is caused by relatively mild winter and low
summer temperatures. Lower values (15–20 t ha−1) have been sim-
ulated for main parts of the EU25 and relate to the shorter growing
period caused by either the continental climate (cold spring and
warm summers) or Mediterranean climate (warm summers). The
lowest BIOM values (<15 t ha−1) occur in the same areas for which
the LAI-max (and thus the light interception and growth rate) are
low. HI is within the expected range (0.40–0.60) in major parts of
the EU25 and is only very high (>0.60) in the areas with extremely
low values of LAI-max and BIOM. In these areas the period of leaf
and stem formation is too short compared to the period of grain
formation leading to high values for HI.

3.2. Water-limited yields

The main part of the EU25 has water-limited yields between 7
and 9 t ha−1 (Fig. 5) and these are 1–2 t ha−1 lower than potential
yields. This small difference indicates that water stress during the
growing period is limited and that climatic conditions in winter
and spring are rather humid in most regions over the EU25. High-

est water-limited yields (8–11 t ha−1), being almost similar to the
potential yields, mainly occur in Ireland, western England, Scotland,
and western France. These regions all have a relatively high rain-
fall and a very long growth period for winter wheat due to mild

http://www.kennisakker.nl/kenniscentrum/document/rassenbulletin-wintertarwe
http://www.kennisakker.nl/kenniscentrum/document/rassenbulletin-wintertarwe
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Fig. 4. Maximum leaf area index (LAI-max, in ha ha−1, upper left), total biomass (BIOM, dry matter in t ha−1, upper right) and harvest index (HI, in –, lower left) for simulated
potential  growth and production of autumn-sown wheat. (For interpretation of the references to colour in this artwork, the reader is referred to the web version of the
article.)
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ig. 5. Simulated water-limited autumn-sown wheat yields (dry matter; t ha ).
For interpretation of the references to colour in this artwork, the reader is referred
o  the web version of the article.)

inters and relatively low summer temperatures, both as a
esult of a strong maritime influence. Lowest water-limited yields
1–5 t ha−1) are found in parts of Spain, southern Italy, Greece and
oland due to both the relatively short growth period and the low-
ainfall.

For all countries the LAI-max for water-limited conditions
ppear to be practically similar to those under potential growing
onditions (Fig. 6), which indicates that growth reduction due to
rought mainly happens during the grain filling period in our sim-
lations. Highest values of BIOM (>20 t ha−1) do occur in regions
nd countries along the coast (e.g., Ireland, western England, Scot-
and, and western France) where LAI-max values are almost similar
o potential values for BIOM. This is plausible as the rainfall in these
egions is relatively high. Lowest values are found in the hot and dry
reas in Europe (i.e., between 5 and 15 t ha−1 in Spain and Greece)
aused by a lack of rainfall and a short growth period. HI is between
.40 and 0.60 in main parts of the EU25, but is very low (<0.30)

n, for example, south-western Spain and southern Italy and very
igh (>0.60) in the same areas where the LAI-max and BIOM values
nder potential conditions are extremely low (Section 3.1).

The relative crop transpiration (RTRA, i.e., actual ET/potential
T; Fig. 6) indicates to what extent water-limited yields and BIOM
re affected by drought. High RTRA values (1–0.9) are correlated
o high seasonal rainfall sums in coastal zones and mountainous
egions. In some dry southern regions (i.e., central-eastern Spain

nd northern Greece, see Fig. 6) RTRA approaches unity which is
n artefact and is caused by the extremely low LAI-max and BIOM
alues and its limited water demand by ET (Section 3.1). Lower
TRA values (0.2–0.7) in southern Europe (and for instance Poland)
earch 143 (2013) 130–142

indicate major drought stress and these low values correspond to
low HI values in the same regions (Fig. 6). Drought stress mainly
occurs during grain filling and then leads to relatively low grain
yields compared to BIOM and thus low HI values.

4. Actual yields and yield gap

Highest actual dry matter wheat yields (between 6 and 8 t ha−1)
are found in north-western Europe (Fig. 7). In most regions of the
EU25 yields vary between 4 and 6 t ha−1. Lowest yields (<3 t ha−1)
occur in Spain, southern Italy and Greece because of the hot and
dry conditions in spring. In Finland and the Baltic States spring
wheat (sown in spring) is predominantly cultivated which results
in relatively low actual yields. For most European countries the
spring wheat area covers less than 20% of the wheat area. Except for
Finland and the Baltic States, the FADN database mainly represents
autumn-sown wheat.

Yield gaps for wheat must be calculated against potential yields
for irrigated areas and water-limited yields for rain fed areas (Fig. 8).
Although intensive irrigation (>50% of area, see Fig. 9) occurs in
various basins, irrigation water is used mainly for cash crops (e.g.,
vegetables, fruits) and summer crops (rice and maize) (MMA,  2007).
Crops such as wheat are grown mainly under rain fed conditions. In
other intensively cropped areas, such as Denmark, The Netherlands,
central Portugal and southern France, between 10 and 30% of the
arable crops are irrigated, whereas in other regions over Europe, the
irrigated fraction of arable land is less than 10%. This indicates that
in most regions the yield gap can be based best on the simulated
water-limited yields minus the actual yields.

Yield gap estimations based on simulated water-limited yields
are generally 2–4 t ha−1, but smaller (0–2 t ha−1) in north-western
Europe (Fig. 8). The highest yield gaps (>4 t ha−1) are calculated
for Portugal and the Baltic states and Finland (note that the actual
yields in the Baltic states and Finland generally represent the
lower yielding spring-sown wheat). Negative yield gaps relative
to water-limited yields occur (0 to −1 t ha−1) in the coastal areas
near Valencia. This indicates that in these areas the water supply is
less limiting than assumed in the simulation which might be due
to irrigation. The Netherlands, Denmark and North Germany have
very small yield gaps, likely because of capillary rise of groundwa-
ter not included in the simulations (Fig. 8). Remarkably low yield
gaps are found in Poland which is probably due to an underestima-
tion of the simulated water-limited yield. Furthermore the yield
gap in some areas in Spain, southern France, central and south-
ern Italy, Slovenia and Greece is probably larger for both irrigated
and rain fed conditions due to reasons explained in Sections 3.1
and 3.2 (CGMS probably underestimates yields due to wrong crop
parameter values).

5. Discussion

Uncertainty of the yield gap estimates depends on the actual
yield data and on the simulated potential and water-limited yield
data. In the following sections the uncertainty of each of these vari-
ables is discussed. Finally the CGMS approach to calculate the yield
gap of autumn-sown wheat is compared with other studies.

5.1. Uncertainty in actual yields

The FADN system is the best possible source on actual wheat
yields available in Europe. These actual yields represent farmers’

yields fairly well as the total number of farms included in FADN
per year exceeds 74,000 for the EU25. Separate statistics on wheat
varieties are lacking in the FADN database. For most countries this
is not a problem as, compared to winter wheat, spring wheat area is
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egligible. Exceptions are Finland and the Baltic states where spring
heat (sown in spring) is the dominant wheat variety. Compared

o autumn-sown crops (winter wheat and autumn-sown spring
heat), spring-sown crops have significantly lower yields which
 matter in t ha−1, upper right), harvest index (HI, in –, lower left) and the relative crop
wth and production of autumn-sown wheat. (For interpretation of the references
make the FADN wheat yields of these countries not suitable for yield
gap analysis. Furthermore the FADN database does not distinguish
between rain fed and irrigated wheat yields. In case of wheat this
is likely to be a small problem as almost all wheat in the EU25 is
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ain fed (e.g., MMA, 2007). Yet, for other, more commonly irrigated,
rops (e.g., grain maize) the FADN database seems less appropriate
or correct estimations of yield gaps. FADN data are only available at
UTS level 2 (NUTS level 1 or 0 in case of smaller countries), which

hus defines the finest level at which yield gaps can be estimated
ith this source.

Actual yields in this study might be (slightly) underestimated
s wheat yields increased due to adoption of improved technol-
gy (Fischer and Edmeades, 2010). We  took the average actual
ield over 1990–2006. 2006 is the most recent year with sufficient
ata available. To capture inter-annual variability of water-limited
ields Van Ittersum et al. (2013) recommend a period of at least 15
ears for simulating water-limited yields and 10 years for actual
ields in case of favourable, high-yield environments and longer
ime intervals (15–20 years) of actual yields for very harsh environ-

ents. We  took the same period for both simulated water-limited
ields and actual yields so that both time series include the same
xtreme yields.

.2. Uncertainty in simulated potential and water-limited yields

Autumn-sown wheat yields as simulated with CGMS are plau-
ible for most regions of the EU25. The use of a validated, process
ased crop model, WOFOST (within CGMS), driven by detailed input
ata results in plausible key crop characteristics such as BIOM,
AI-max and HI. However, for some regions in southern Europe
nrealistic values of BIOM, LAI-max and HI indicate that simu-
ated yields are not plausible. First, CGMS overestimates drought
tress during the grain filling period resulting in relatively low
I values in the water-limited simulations (e.g., southern Spain,

outhern Italy). In reality, however, crops partly compensate for
UROSTAT (2005) (in % of total land area, right). (For interpretation of the references

low assimilation rates during grain filling using earlier produced
stem reserves (Kemanian et al., 2007; Slewinski, 2012), a process
that is not accounted for in CGMS. The problem can be solved by
calculating grain yields from simulated total biomass production
times either a fixed HI or an HI that is related to the relative biomass
accumulation after anthesis (Kemanian et al., 2007).

Second, too high HI values (and simultaneously, too low LAI-
max  and BIOM values) in the simulations are found in some areas in
central-eastern Spain, southern France, central Italy, Slovenia and
Greece and are caused by too low values of the temperature sum
parameter that determines the time duration between 1st January
and anthesis. Most important reason is the mismatch between
the spatial scale of observed crop calendars and simulation units
which especially applies to the more mountainous areas. The crop
calendar data used to determine temperature sums between 1st
January and anthesis (Russell and Wilson, 1994; Narciso et al., 1992;
Hough, 1990; Willekens et al., 1998) mostly relate to administrative
regions. Such calendars are averages for the main agricultural areas
and ignore spatial variability within these regions. For instance, a
regional crop calendar valid for a valley can be linked to a colder
climatic grid cell representing a plateau while in reality the crop
within this climatic grid cell has a later anthesis and maturity
date than the valley. Besides, the latest update of temperature sum
parameters in CGMS (Willekens et al., 1998) was  done on a coarse
spatial grid resulting in the assignment of relatively low temper-
ature sum crop parameter values from the cooler higher altitude
areas also to the warmer lowland areas. Third, very low simulated

LAI-max and BIOM values occur in areas (mainly small areas in
central-eastern Spain) with a strong continental climate. This can
be explained from the negative effect of low minimum tempera-
tures in spring on the assimilation rate (specifically the conversion



H. Boogaard et al. / Field Crops Research 143 (2013) 130–142 139

F nce b
f es to c

o
l

p
t
a
o
a
w
c
p

p
i
1
h
p
t
o
c
t

r
l
e
d
i
m
c
K
g

ig. 8. Yield gap for autumn-sown wheat (dry matter; t ha−1) as based on the differe
or  rain fed areas (right) and actual wheat yields. (For interpretation of the referenc

f assimilates in structural biomass during night), probably being
ess strong in reality than assumed in the growth simulations.

Recently the EC launched a study to compile and calibrate new
arameter sets for the major arable crops over Europe, based on
he most recently collected crop information (Wolf et al., 2011)
nd executed on the current 25 km × 25 km climatic grid. The use
f this new set will solve several of the above mentioned problems
nd will improve the performance of CGMS, as this parameter set
ill better represent local variation in crop calendars and growing

onditions. However the evaluation is still on-going and this new
arameter set is not yet implemented in CGMS.

Calibration is another source of uncertainty. CGMS uses model
arameters that are based on field data from wheat experiments

n Western Europe during the 1980s (Van Diepen and De Koning,
990; Boons-Prins et al., 1993). Improved new wheat varieties
ave higher potential yields (Fischer and Edmeades, 2010) and the
otential yield levels presented in this study may  therefore be lower
han the latest potential yield levels. A new model calibration based
n more recent wheat experiments is needed, however detailed
rop experiments are nowadays carried out by private companies
hat often do not allow the use of their experimental data.

A third point of uncertainty with respect to simulated yields is
elated to the quality of the used input data for CGMS, in particu-
ar solar radiation, temperature and rainfall. According to Roerink
t al. (2012) the CGMS global radiation values may be less accurate
ue to the different weather elements and methods used. Depend-

ng on data availability, global radiation values are a mixture of

easured radiation and values based on either sunshine duration,

loud cover and temperature or only temperature (Supit and Van
appel, 1998). Both the interpolation process (to a 25 km × 25 km
rid), as well as the method to estimate radiation contribute to the
etween simulated potential yields for irrigated areas (left) and water-limited yields
olour in this artwork, the reader is referred to the web  version of the article.)

uncertainty in the results. Roerink et al. (2012) recommend using
the global radiation of MeteoSat Second Generation (Trigo et al.,
2011) in CGMS. Also, in the absence of winter and spring wheat
land use maps, an arable land cover map  was applied. As a con-
sequence, areas where autumn-grown wheat is grown have been
overestimated and this introduced uncertainty in the aggregation
of simulated yield to regional levels especially where climate and
soil do vary within such region. Another uncertainty as to input
data, refers to the available soil water at sowing that is set at field
capacity in CGMS. For areas such as eastern Spain available water
at sowing might be lower due to the relatively dry winter condi-
tions (Supit and Wagner, 1998). Finally, due to a lack of input data
(e.g., groundwater levels) calculation of capillary rise of groundwa-
ter has been switched off and thus CGMS may  have underestimated
water-limited yields for some regions (e.g., The Netherlands).

Uncertainty in simulation results is also caused by model sim-
plifications. As explained re-allocation of assimilates across plant
organs (from stems to grains) during drought is not included in
CGMS. Further, vernalization is not implemented and crop growth
simulation starts on 1st January (effectively when mean daily tem-
peratures are above 0 ◦C after 1st January). In reality winter wheat
is sown in autumn varying from August in northern Europe to
November in southern Europe (in southern Italy, southern Spain
and much of Portugal this autumn-sown wheat is a spring wheat
variety). Initial biomass, representing the crop state after the (cold)
winter period, is based on field experiments (Van Heemst, 1988;
Van Diepen and De Koning, 1990). In CGMS spatial variation in ini-

tial biomass, resulting from spatial differences in autumn growth
and winter conditions (damage due to frost), is not included as good
data are not available. In the far south (e.g., around Seville) yields
may  be underestimated as wheat growth starts before 1st January
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Table 1
A comparison of potential and actual winter wheat yield (dry matter in t ha−1) for
The  Netherlands collected from different studies.

Relevant period Potential yieldc Actual yield

CGMS 1990–2006 8.7
Stehfest et al. (2007)a 1961–1990 9.5
Licker et al. (2010) 1997–2003 6.3
Variety trialsb 2007–2011 9.6
Fischer et al. (2002) 1961–1990 9.0
Monfreda et al. (2008) 1997–2003 7.1
CBS, Statline (2012) 1994–2011 7.3
FADN data 1990–2006 6.9

a Because of the high fertilizer application rates and low water stress in the
Netherlands this value can be used as an estimation of potential yield.

b Data from variety trials as provided by Bert Rijk, Wageningen University.
(http://www.kennisakker.nl/kenniscentrum/document/rassenbulletin-wintertarwe).

c Note that Neumann et al. (2010) do not have data as for the Netherlands no grid
cells were selected in their statistical approach.

Table 2
A comparison of water-limited autumn-sown wheat yield (dry matter in t ha−1) as
estimated by CGMS and Fischer et al. (2002) for some major producing countries in
Western Europe.

CGMS Fischer et al. (2002)

Germany 7.5 9.3
France 7.8 8.9
United Kingdom 8.2 6.7
ig. 9. Irrigated areas (as percentage of total land area) (Siebert et al., 2007). (For
nterpretation of the references to colour in this artwork, the reader is referred to
he  web  version of the article.)

ue to mild winter temperatures. Finally the soil moisture content
s calculated by a simple two layer water balance model. The first
ayer is the actually rooted zone, which grows in thickness from an
nitial value of 10 cm to its maximum value, limited by soil depth
r crop property. This concept has an undesired co-effect as the
ncrease of soil moisture content due to rainfall depends on rooting
epth. In some situations this leads to a very quick recovery of the
rop after rainfall since all the roots have immediate access to infil-
rating rain. A new version is being developed in which soil layers
re at fixed positions (they do not grow downward with the roots)
nd water transport between layers is estimated from soil hydraulic
onductivity as a function of the soil water content (Rappoldt et al.,
012), but this is not yet operational in CGMS.

.3. Reliability of the yield gap estimates

Van Ittersum et al. (2013) report potential and actual winter
heat yields of different studies for the Netherlands. We  compared

hese yields with CGMS and data from variety trials and added the
tudy of Fischer et al. (2002) (Table 1). Potential yields given by
icker et al. (2010) are too low (lower than actual yields). On the
ontrary, yields of CGMS, Fischer et al. (2002) and Stehfest et al.
2007) are close to those of variety trials which can be regarded
s a reliable reference for potential winter wheat yields in the
etherlands. As expected, the CGMS yields slightly underestimate

otential yields for the Netherlands which emphasizes the need to
alibrate for new varieties.

Apart from Neumann et al. (2010) and Fischer et al. (2002)
ost other studies focus on simulation of actual yields instead of
Spain 4.9 6.4

potential or water-limited yields. The frontier yields of Neumann
et al. (2010) are quite similar to the simulated water-limited yields
of CGMS for France, Germany and UK (dry matter: 7–8 t ha−1). They
used a stochastic frontier production function on actual wheat
yields to calculate global datasets of attainable yields for differ-
ent agri-environmental conditions. For France, Germany and UK
we can assume that these highest yields are approaching the bio-
physical limit of water-limited yields, as many farmers practice
near-optimal crop management (nutrients non-limiting and biotic
stress effectively controlled). For most areas in southern and central
Europe, however, Neumann et al. (2010) show yield gaps (between
0 and 3 t ha−1 in fresh matter) that are considerable smaller than
those of CGMS (between 3 and 6 t ha−1 in dry matter). These dif-
ferences in estimated yield gap follow from differences between
the two methodologies where the frontier yield (i.e., the high-
est observed yield) of Neumann et al. (2010) does not necessarily
match the biophysical limit (Van Ittersum et al., 2013).

We also compared water-limited yields of CGMS with Fischer
et al. (2002) for some major wheat producing countries in Europe
(see Table 2). For France and Germany, yields of Fischer et al. (2002)
are higher than in CGMS while for the United Kingdom Fischer
et al. reported lower yields than CGMS that are also lower than
the FADN actual yield. These low yields may  can be explained by
the aggregation method employed by Fischer et al. and the absence
of a wheat land use map  as these yields reflect the average of the
high yielding regions in east England and low yielding areas in e.g.
Scotland where Fischer et al. present results although the FADN
database does not report any winter wheat. For Spain the CGMS
water-limited yields are lower (1.5 t ha−1) than Fischer et al. while
spatial variability (visually checked) corresponds, i.e., lower yields
in southern and eastern Spain and higher yields in Castilla y Leon.
Section 5.2 provides reasons for too low simulations for parts of
Spain.

The method presented in this study is based on existing and

continuously updated information from the CGMS modelling sys-
tem with autumn-sown wheat simulation results presented here as
an example. In the near future, similar information will also come

http://www.kennisakker.nl/kenniscentrum/document/rassenbulletin-wintertarwe
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vailable for other continents since the EC is planning to set-up
GMS applications outside Europe.

Comparison with other studies and variety trials show that
ater-limited yields of CGMS are consistent and realistic and can

e used to calculate yield gaps in the EU25. Unlike other global
pproaches CGMS combines a robust, validated crop growth model
OFOST with detailed input data that has a good spatial coverage.

patial variation in climate, soil and crop are captured and as such
egional estimates can be simply obtained by area weight aggrega-
ion. The approach proposed by Van Ittersum et al. (2013) invests
n collecting agronomic data from local sites with wheat cultivation
including differences between autumn-sown and spring-sown
heat varieties, as well as soft and durum wheat cultivation) which
ight limit the number of these sites and as a consequence some

ariability in climate, soil and crop might be ignored in the aggre-
ation to regional estimates.

. Conclusions

CGMS simulates potential and water-limited yields and other
imulated crop characteristics of autumn-sown wheat in a consis-
ent and plausible manner for most regions in the EU25 and results
an be used to calculate yield gaps with some precision. For most
egions in the EU25 yield gaps for autumn-sown wheat can be based
n simulated water-limited yields minus actual yields, except for
reas with high groundwater levels, where potential yields are
ore representative. The yield gap is between 2 and 4 t ha−1 in main

arts of the EU25, is smaller north-western Europe and highest in
ortugal.

In some regions in southern Europe unrealistic values of harvest
ndex, maximum leaf area index and biomass are simulated which
re caused by wrong values of crop parameters (mainly phenology
elated) and the omission in CGMS to re-allocate assimilates from
tems to storage organs during severe droughts. Solutions for these
roblems are available and can be applied.

Potential and water-limited yields of present cultivars are
lightly underestimated by CGMS which calls for a calibration using
ecent field experiments. Other potential improvements of CGMS
elate to model processes (e.g., vernalization and re-allocation of
ssimilates) and input data, such as the use of winter and spring
heat land use maps, refinement of the estimation of initial soil
ater content and initial biomass and the use of a better data source

or radiation.
CGMS uses local weather, soil and crop data with a complete spa-

ial coverage (top down) to simulate (spatial variability) of yields
ver Europe which makes it an interesting benchmark for the pro-
osed bottom-up approach in the global yield gap atlas project
www.yieldgap.org).
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