Sorghum production in nine Sub-Saharan African countries Sorghum production in nine Sub-Saharan African countries

Countries: Mali, Burkina Faso, Ghana, Niger, Nigeria, Ethiopia, Kenya, Uganda and Tanzania

Introduction

Sorghum is crucially important to food security in Africa as it is a drought resistant crop and can withstand periods of high temperature. Sorghum in Africa is processed into a very wide variety of attractive and nutritious traditional foods, such as semi-leavened bread, couscous, dumplings and fermented and non-fermented porridges. It is the grain of choice for brewing traditional African beers.

This crop is quantitatively the world’s fifth most important cereal grain, after wheat, maize, rice and barley. World annual sorghum production was 58.7 Mton in 2020, of which Africa produced about 27.5 Mton in this year. This makes sorghum, quantitatively the second most important cereal grain in Africa after maize. Harvested from an area of 27.3 Mha in the semi-arid regions of Africa sorghum contributes 21.5% area to cereal production (FAOSTAT, 2022). Around 56.7 percent of all sorghum lands in Africa are located in the ten sub-Sahara African countries listed (Table 1).

 

Table 1. Annual sorghum harvest area in sub-Saharan Africa

Country

Annual sorghum

harvest area (1000 ha)*

Percentage of total

 sorghum lands in Africa

Burkina Faso

1751

6.2

Ethiopia

1847

6.6

Ghana

260

0.9

Kenya

214

0.8

Mali

1562

5.6

Niger

3693

13.2

Nigeria

5560

19.8

Uganda

297

1.1

Tanzania

699

2.5

Total

15883

56.7

* The data are from FAOSTAT for the period from 2015 to 2020

 

The crop model

The Python Crop Simulation Environment of WOFOST (WOrld FOod STudies) was used for the implementation (https://pcse.readthedocs.io/en/stable/). This model takes into account phenological development, leaf development, light interception, CO2 assimilation, root growth, transpiration, respiration and partitioning of assimilates (de Wit et al., 2019). Daily weather data, crop parameters, soil parameters, and management data are needed to run the model and simulate water-limited potential yield (Yw). The source of different data to do the simulations for each country were presented in Table 2.

 

Table 2.  Sources of data to simulate rainfed sorghum potential yield and for calculating the yield gap. Note: GYGA CA = GYGA country agronomist

Country

Sowing window

Daily weather data

Cultivar thermal time requirment**

Soil data

Actual yield

Burkina Faso

GYGA CA

Propagated data*

calculated

AFSIS***

National Statistical database

Ethiopia

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Ghana

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Kenya

GYGA CA

Propagated data

calculated

AFSIS

GYGA CA

Mali

GYGA CA

Propagated data

calculated

AFSIS

GYGA CA

Niger

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Nigeria

GYGA CA

Measured and Propagated data

calculated

AFSIS

GYGA CA

Tanzania

GYGA CA

Propagated data

calculated

AFSIS

GYGA CA

Uganda

GYGA CA

Propagated data

calculated

AFSIS

GYGA CA

* Details are in Van Wart et al. (2015)

** Calculated based on the sowing, flowering and maturity timing information from the GYGA country agronomist using weather data and cardinal temperatures

*** AFrica Soil Information Service (Leenaars J.G.B., 2018)

Reference weather stations

The simulation was performed for 86 weather stations in sub-Saharan Africa (Table 3). These were identified as reference weather stations for sorghum in SSA countries based on the GYGA protocol (https://www.yieldgap.org/web/guest/methods-overview). SPAM (Spatial Production Allocation Model; https://www.mapspam.info/) maps, together with expert knowledge from agronomists and experts from these countries, were used to identify the sorghum harvested area  (You et al., 2009, 2014). Following van Bussel et al (2015), a total of 87 buffer zones were selected for rainfed sorghum in SSA countries (Table 3, Fig. 1)

 

Figure 1. The location of the reference weather stations for rainfed sorghum in sub-Saharan African countries

 

Weather data

Weather data used in simulation included daily solar radiation, maximum and minimum temperatures, precipitation, vapor pressure deficit, and wind speed. Weather data for selected weather stations were subjected to quality control measures to fill in missing data and identify and correct erroneous values. In the case of those stations with only few years of weather data (Table 3), long-term weather data were generated based on correlations between measured weather data and NASA-POWER maximum and minimum temperatures (Van Wart et al., 2015). In the case of solar radiation and rainfall, the data from NASA-POWER were used without any correction (NASA, 2022). In the case of buffers without measure weather data at all, named the virtual stations (Table 3), uncorrected NASA-POWER data were used for all meteorological variables needed for crop modeling.

Soil information

Soil data was obtained from the AFSIS[1] (Leenaars J.G.B., 2018). Soil moisture content at field capacity, soil moisture content at wilting point, not infiltrating fraction of rainfall, initial soil water, and maximum rootable depth of the soil were obtained as soil parameters for each weather station.

Management data

The simulations were done under water-limited conditions with no limitation for nutrients. So, the sowing date within the buffers of the weather stations was the main management input data needed to run the model. For this purpose, the common sowing windows of sorghum for each buffer were retrieved through agronomists from the countries (Fig. 2). These sowing windows and an algorithm were used to estimate the sowing date for each year for each weather station. The algorithm calculates the amount of cumulative rainfall for seven consecutive days into the sowing window. The last day of this period resulting in more than 20 millimeter cumulative rainfall was considered as the sowing date. If there was no consecutive seven days with at least 20 millimeter rainfall into the sowing window, the last day of the sowing window was assumed the sowing date.

Crop parameters

The crop parameters consist of parameter names and the corresponding parameter values that are needed to parameterize the components of the crop simulation model. These are crop-specific values regarding phenology, assimilation, respiration, biomass partitioning, etc. The same crop parameters were used for the simulations in all the weather stations except the parameters for phenology. The phenological parameters including the thermal time requirement from emergence to flowering and from flowering to harvesting were calculated based on the observed data for sowing, emergence, flowering and harvesting using the cardinal temperature and weather data at each weather station (Table 3).

Figure 2. The sowing window to plant rainfed sorghum at the weather stations in sub-Saharan African countries; The name and information of each station are presented in Table 3.

                  Sowing window Thermal time requirement**
Country Station name Station ID* Longitude Latitude Elev Cropping system Water regime Cropcycle Start End From emergence to flowering From flowering to maturity
Mali Bougouni 2000000 -7.5 11.42 344 Single: sorghum Rainfed 1 14-Jun 29-Jul 850 750
Mali Dagdag 2000001 -11.4 14.48 47 Single: sorghum Rainfed 1 01-Jul 31-Jul 850 850
Mali Hombori 2000002 -1.68 15.33 288 Single: sorghum Rainfed 1 15-Jul 15-Aug 800 840
Mali Koutiala 2000003 -5.47 12.38 367 Single: sorghum Rainfed 1 10-Jun 15-Jul 950 950
Mali Mopti 2000004 -4.1 14.52 272 Single: sorghum Rainfed 1 01-Jul 31-Jul 800 840
Mali Nara 2000005 -7.28 15.17 265 Single: sorghum Rainfed 1 01-Jul 31-Jul 800 840
Mali Segou 2000008 -6.15 13.4 289 Single: sorghum Rainfed 1 10-Jun 10-Jul 800 800
Mali Senou 2000009 -7.95 12.53 381 Single: sorghum Rainfed 1 10-Jun 15-Jul 950 950
Mali Sikasso 2000010 -5.68 11.35 375 Single: sorghum Rainfed 1 10-May 10-Jun 950 950
Niger Maradi 3000011 7.08 13.47 373 Single: sorghum Rainfed 1 15-Jun 15-Jul 1400 550
Niger Maradi 3000011 7.08 13.47 373 Single: sorghum Rainfed 1 15-Jun 15-Jul 1000 550
Niger Zinder 3000015 8.98 13.78 453 Single: sorghum Rainfed 1 15-Jun 15-Jul 1400 600
Niger Zinder 3000015 8.98 13.78 453 Single: sorghum Rainfed 1 15-Jun 15-Jul 1000 600
Burkina Faso Bobodioulasso 4000000 -4.32 11.17 445 Single: sorghum Rainfed 1 01-Jun 15-Jul 910 900
Burkina Faso Bogande 4000001 -0.14 12.97 281 Single: sorghum Rainfed 1 25-Jun 15-Jul 930 920
Burkina Faso Boromo 4000002 -2.93 11.75 243 Single: sorghum Rainfed 1 10-Jun 15-Jul 670 550
Burkina Faso Dedougou 4000003 -3.48 12.47 299 Single: sorghum Rainfed 1 15-Jun 15-Jul 670 550
Burkina Faso Fadangourma 4000004 0.37 12.03 294 Single: sorghum Rainfed 1 15-Jun 15-Jul 930 920
Burkina Faso Gaoua 4000005 -3.18 10.33 339 Single: sorghum Rainfed 1 01-Jun 20-Jul 910 900
Burkina Faso Ouahigouya 4000007 -2.42 13.57 315 Single: sorghum Rainfed 1 15-Jun 20-Jul 840 800
Burkina Faso Po 4000008 -1.15 11.15 322 Single: sorghum Rainfed 1 15-Jun 15-Jul 860 870
Burkina Faso Dori 4000009 -0.03 14.03 282 Single: sorghum Rainfed 1 01-Jul 30-Jul 670 570
Ethiopia Assosa 5000006 34.52 10.07 1419 Single: sorghum Rainfed 1 01-Jun 30-Jun 700 720
Ethiopia Ayira 5000007 35.33 9.06 1700 Single: sorghum Rainfed 1 15-May 15-Jun 800 830
Ethiopia Bahirdar 5000008 37.38 11.58 1790 Single: sorghum Rainfed 1 10-May 15-Jun 580 510
Ethiopia Butajira 5000010 38.22 8.08 3252 Single: sorghum Rainfed 1 10-Apr 09-May 560 510
Ethiopia Gelemso 5000016 40.525 8.809 1810 Single: sorghum Rainfed 1 25-Mar 24-Apr 750 800
Ethiopia Gondar 5000017 37.4715 12.59 2052 Single: sorghum Rainfed 1 15-May 14-Jun 590 510
Ethiopia Gore 5000018 35.53 8.02 1880 Single: sorghum Rainfed 1 01-Apr 30-Apr 660 660
Ethiopia Haramaya 5000019 42.03 9.4 2029 Single: sorghum Rainfed 1 25-Mar 24-Apr 600 540
Ethiopia Harar 5000020 42.1 9.31 1961 Single: sorghum Rainfed 1 25-Mar 24-Apr 680 660
Ethiopia Jijiga 5000021 43.5 9.02 1534 Single: sorghum Rainfed 1 01-Apr 30-Apr 680 660
Ethiopia Kobo 5000023 39.63 12.15 1500 Single: sorghum Rainfed 1 16-Jun 15-Jul 770 710
Ethiopia Kombolacha 5000024 39.72 11.1 1840 Single: sorghum Rainfed 1 01-Apr 30-Apr 680 640
Ethiopia Melkassa 5000027 39.33 8.4 1550 Single: sorghum Rainfed 1 15-Apr 14-May 710 630
Ethiopia Nekemte 5000029 36.54 9.09 2110 Single: sorghum Rainfed 1 15-May 13-Jun 630 560
Ethiopia Pawe 5000030 36.403 11.31 1100 Single: sorghum Rainfed 1 16-Apr 15-May 950 950
Ethiopia Shambu 5000031 37.1212 9.57117 2367 Single: sorghum Rainfed 1 16-Apr 15-May 540 620
Ethiopia Shireendasilasse 5000033 38.334 14.1 1920 Single: sorghum Rainfed 1 01-Jun 30-Jun 600 410
Ethiopia Woliso 5000035 37.97 8.55 2060 Single: sorghum Rainfed 1 25-Mar 24-Apr 740 740
Ethiopia Wolkite 5000036 37.78 8.27 1880 Single: sorghum Rainfed 1 25-Mar 24-Apr 880 980
Ethiopia eth_rfso3 5000123 40.72 8.43 1082 Single: sorghum Rainfed 1 25-Mar 24-Apr 630 560
Nigeria Bida 6000004 6.02 9.1 143 Melon–sorghum Rainfed 1 01-Jun 30-Jun 1120 1370
Nigeria Kaduna 6000005 7.45 10.6 642 Single: sorghum Rainfed 1 15-Jun 15-Jul 930 1030
Nigeria Makurdi 6000008 8.62 7.68 97 Single: sorghum Rainfed 1 01-Jun 30-Jun 1220 1370
Nigeria Bauchi 6000016 9.82 10.28 609 Single: sorghum Rainfed 1 01-Jun 30-Jun 1150 1270
Nigeria Gusau 6000021 6.7 12.17 469 Single: sorghum Rainfed 1 01-Jun 30-Jun 770 770
Nigeria Ibi 6000022 9.75 8.18 111 Single: sorghum Rainfed 1 01-Jun 30-Jun 1020 1170
Nigeria Kano 6000025 8.53 12.05 481 Single: sorghum Rainfed 1 15-May 15-Jun 1120 1070
Nigeria Katsina 6000026 7.62 13.02 427 Single: sorghum Rainfed 1 01-May 31-May 1040 1170
Nigeria Maidu 6000028 13.08 11.85 354 Single: sorghum Rainfed 1 01-Jun 30-Jun 850 850
Nigeria Nguru 6000032 10.47 12.88 344 Single: sorghum Rainfed 1 01-Jun 30-Jun 870 870
Nigeria Sokoto 6000037 5.25 13.02 302 Single: sorghum Rainfed 1 01-Jun 30-Jun 1120 1200
Nigeria Yelwa 6000040 4.75 10.88 243 Single: sorghum Rainfed 1 01-Jun 30-Jun 1220 1370
Nigeria nig_rfso2 6000109 10.38 12.03 371 Single: sorghum Rainfed 1 01-Jun 30-Jun 830 770
Nigeria nig_rfso3 6000110 8.36 11.79 470 Single: sorghum Rainfed 1 15-May 15-Jun 920 1000
Nigeria nig_rfso6 6000113 4.65 10.04 160 Melon-sorghum,  Rainfed 1 01-Jun 30-Jun 1220 1370
Ghana Bolgatanga 7000000 -0.87 10.8 180 Single: sorghum Rainfed 1 15-May 15-Jun 1240 1230
Ghana Wa 7000006 -2.5 10.07 323 Single: sorghum Rainfed 1 15-May 15-Jun 1130 1120
Ghana Yendi 7000007 0 9.43 197 Single: sorghum Rainfed 1 01-Jun 15-Jul 1000 880
Kenya Dagoretti 9000000 36.45 -1.24 1436 Single: sorghum Rainfed 1 01-Apr 30-Apr 440 310
Kenya Embu 9000001 37.58 -0.49 1350 Single: sorghum Rainfed 1 31-Jan 28-Feb 800 670
Kenya Kakamega 9000003 34.46 0.17 1399 Single: sorghum Rainfed 1 01-Apr 30-Apr 530 400
Kenya Kericho 9000005 35.16 -0.22 1356 Single: sorghum Rainfed 1 01-Apr 30-Apr 700 780
Kenya Kisii 9000006 34.79 -0.68 1734 Single: sorghum Rainfed 1 01-Apr 30-Apr 560 420
Kenya Kisumu 9000007 34.73 -0.07 1146 Single: sorghum Rainfed 1 01-Apr 30-Apr 700 510
Kenya Kitale 9000008 34.96 0.97 1850 Single: sorghum Rainfed 1 01-Apr 30-Apr 850 1000
Kenya Nakuru 9000012 36.6 -0.16 2557 Single: sorghum Rainfed 1 15-Feb 15-Mar 700 1000
Kenya Eldoret 9000015 35.3 0.48 2120 Single: sorghum Rainfed 1 01-Mar 01-Apr 670 700
Uganda Arua 10000000 30.92 3.05 1211 Sorghum-Pigeon pea Rainfed 1 15-Apr 15-May 720 560
Uganda Arua 10000000 30.92 3.05 1211 Sorghum-Pigeon pea Rainfed 2 15-Aug 15-Sep 650 550
Uganda Gulu 10000004 32.28 2.78 1105 Sorghum-Pigeon pea Rainfed 1 01-Apr 30-Apr 720 640
Uganda Gulu 10000004 32.28 2.78 1105 Sorghum-Pigeon pea Rainfed 2 15-Jul 15-Aug 680 610
Uganda Jinja 10000005 33.18 0.51 1173 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 670 540
Uganda Jinja 10000005 33.18 0.51 1173 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 670 540
Uganda Kabale 10000006 30.01 -1.24 1869 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 600 480
Uganda Kabale 10000006 30.01 -1.24 1869 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 510 390
Uganda kitgum 10000010 32.89 3.28 953 Sorghum-Pigeon pea Rainfed 1 01-Apr 30-Apr 750 650
Uganda kitgum 10000010 32.89 3.28 953 Sorghum-Pigeon pea Rainfed 2 15-Jul 15-Aug 710 650
Uganda Makerere 10000012 32.63 0.34 1240 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 650 510
Uganda Makerere 10000012 32.63 0.34 1240 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 650 510
Uganda Masindi 10000013 31.72 1.68 1147 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 730 600
Uganda Masindi 10000013 31.72 1.68 1147 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 680 560
Uganda Mbarara 10000014 30.68 -0.6 1402 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 600 480
Uganda Mbarara 10000014 30.68 -0.6 1402 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 600 450
Uganda Namulonge 10000015 32.62 0.53 1160 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 670 540
Uganda Namulonge 10000015 32.62 0.53 1160 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 670 540
Uganda Soroti 10000016 33.62 1.72 1123 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 680 600
Uganda Soroti 10000016 33.62 1.72 1123 Sorghum-Pigeon pea Rainfed 2 15-Aug 15-Sep 660 600
Uganda Tororo 10000017 34.17 0.68 1171 Sorghum-Beans Rainfed 1 15-Mar 15-Apr 700 600
Uganda Tororo 10000017 34.17 0.68 1171 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 660 610
Uganda uga_rfso1 10000107 32.07 2.59 1011 Sorghum-Pigeon pea Rainfed 1 15-Mar 15-Apr 720 640
Uganda uga_rfso1 10000107 32.07 2.59 1011 Sorghum-Pigeon pea Rainfed 2 15-Aug 15-Sep 680 610
Uganda uga_rfso2 10000108 31.23 3.06 706 Sorghum-Pigeon pea Rainfed 1 15-Apr 15-May 720 640
Uganda uga_rfso2 10000108 31.23 3.06 706 Sorghum-Beans Rainfed 2 15-Aug 15-Sep 680 610
Uganda uga_rfso3 10000109 31.88 1.99 1007 Sorghum-Pigeon pea Rainfed 1 15-Mar 15-Apr 680 600
Uganda uga_rfso3 10000109 31.88 1.99 1007 Sorghum-Pigeon pea Rainfed 2 15-Aug 15-Sep 660 600
Tanzania Dodoma 11000002 35.77 -6.17 1120 Sorghum Rainfed 1 21-Dec 15-Jan 720 450
Tanzania Morogoro 11000006 37.65 -6.82 526 Sorghum Rainfed 1 26-Jan 24-Feb 720 450
Tanzania Shinyanga 11000009 33.43 -3.67 1126 Sorghum Rainfed 1 05-Jan 03-Feb 720 450
Tanzania tan_rfmz1 11000108 33.62 -2.69 1213 Double sorghum Rainfed 1 03-Nov 25-Nov 760 550
Tanzania tan_rfmz1 11000108 33.62 -2.69 1213 Double sorghum Rainfed 2 02-Feb 25-Feb 760 550
Tanzania tan_rfso5 11000122 36.28 -5.56 1227 Sorghum Rainfed 1 01-Jan 30-Jan 720 450
* If the last three numbers of a station ID is more than or equal to 100, the station is as a virtual station
** The cardinal temperatures to calculate the thermal time for millet are 10◦C as the base temperature, 27◦C as the lower optimum temperature, 35◦C as the upper optimum temperature and 45◦C as the ceiling temperature.

 

 

Reference

de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., . . . van Diepen, K. (2019). 25 years of the WOFOST cropping systems model. Agricultural Systems, 168, 154-167. doi:10.1016/j.agsy.2018.06.018

https://pcse.readthedocs.io/en/stable. Accessed on 2022-06-10

https://www.fao.org/faostat/en/#data. Accessed on 2022-06-10

https://www.mapspam.info. Accessed on 2022-06-10

https://www.yieldgap.org/web/guest/methods-overview. Accessed on 2022-06-10

Leenaars, J.G., Claessens, L., Heuvelink, G.B., Hengl, T., González, M.R., van Bussel, L.G., Guilpart, N., Yang, H. and Cassman, K.G., 2018. Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa. Geoderma324, pp.18-36.

NASA. NASA-Agroclimatology methodology. Available at: https://power.larc.nasa.gov/data-access-viewer/. 2022. Accessed on April 10, 2022.

van Bussel LG, Grassini P, Van Wart J, Wolf J, Claessens L, Yang H, Boogaard H, de Groot H, Saito K, Cassman KG, van Ittersum MK. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Research, 2015, 177: 98-108.

Van Wart, J., Grassini, P., Yang, H., Claessens, L., Jarvis, A. and Cassman, K.G., 2015. Creating long-term weather data from thin air for crop simulation modeling. Agricultural and Forest Meteorology209, pp.49-58.

You L, Wood S, Wood-Sichra U, Wu W. Generating global crop distribution maps: From census to grid. Agricultural Systems, 2014, 127: 53-60.

You L, Wood S, Wood-Sichra U. 2009. Generating plausible crop distribution maps for sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems, 99: 126-140.

 

[1] AFrica Soil Information Service

Go to the Atlas

Get access to the Atlas for advanced users

 

Download GYGA results

CC logo Please read the license information in case you are interested in using the data from the Global Yield Gap Atlas.
 
read more>>